
PromptInfuser: Bringing User Interface Mock-ups to Life with 
Large Language Models 

Savvas Petridis Michael Terry Carrie J. Cai 
Google Research Google Research Google Research 

New York, New York, USA Cambridge, Massachusetts, USA Mountain View, California, USA 
petridis@google.com michaelterry@google.com cjcai@google.com 

ABSTRACT 
Large Language Models have enabled novices without machine 
learning (ML) experience to quickly prototype ML functionalities 
with prompt programming. This paper investigates incorporating 
prompt-based prototyping into designing functional user interface 
(UI) mock-ups. To understand how infusing LLM prompts into 
UI mock-ups might afect the prototyping process, we conduct a 
exploratory study with fve designers, and fnd that this capability 
might signifcantly speed up creating functional prototypes, inform 
designers earlier on how their designs will integrate ML, and enable 
user studies with functional prototypes earlier. From these fndings, 
we built PromptInfuser, a Figma plugin for authoring LLM-infused 
mock-ups. PromptInfuser introduces two novel LLM-interactions: 
input-output, which makes content interactive and dynamic, and 
frame-change, which directs users to diferent frames depending on 
their natural language input. From initial observations, we fnd that 
PromptInfuser has the potential to transform the design process by 
tightly integrating UI and AI prototyping in a single interface. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
Interactive systems and tools; • Computing methodologies → 
Machine learning. 

KEYWORDS 
Prototyping, Large Language Models, Generative AI, Design 

ACM Reference Format: 
Savvas Petridis, Michael Terry, and Carrie J. Cai. 2023. PromptInfuser: Bring-
ing User Interface Mock-ups to Life with Large Language Models. In Ex-
tended Abstracts of the 2023 CHI Conference on Human Factors in Computing 
Systems (CHI EA ’23), April 23–28, 2023, Hamburg, Germany. ACM, New 
York, NY, USA, 6 pages. https://doi.org/10.1145/3544549.3585628 

1 INTRODUCTION 
Prototyping is an essential part of the design process, in which 
designers create mock-ups of user interfaces (UIs) to evaluate their 
design. Prototyping artifcial intelligence (AI) applications has tra-
ditionally been difcult for designers as they might not have a good 
understanding of the capabilities of AI, often require the assistance 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
CHI EA ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9422-2/23/04. 
https://doi.org/10.1145/3544549.3585628 

of technical experts, and can have trouble thinking of new use-cases 
of AI [3] [5]. However, recent advances in large language models 
(LLMs) and the appearance of “prompt programming” have dramat-
ically reduced the barriers of prototyping AI functionality. Novices 
without any background in programming and machine learning 
can quickly create custom AI functionalities like translation and 
summarization through natural language prompts. For example, 
with an LLM, a user can tailor its functionality to fulfll English-to-
French translation by providing a prompt consisting of English and 
French pairs: (e.g. “English: Hello. French: Bonjour. English: Where 
is the bus? French: Où est le bus? English: How are you? French:” ). 
With this prompt, the LLM will likely output the French translation: 
“Comment allez-vous?”. 

Through natural language prompting, designers can use LLMs as 
a design material, for quickly understanding and communicating AI 
capabilities. In this vein, recent work has introduced “prompt-based 
prototyping”, which explores how LLM prompting might afect the 
prototyping process [4]. In this prior work, prompt programming 
enabled individuals without ML expertise to rapidly create AI func-
tionality, understand the capabilities of AI, and communicate their 
AI ideas to collaborators. 

While prompting has been shown to substantially lower the bar-
rier to prototyping new AI functionality, this form of AI prototyping 
still occurs outside of the context of building an actual prototype 
with a user interface. Currently, designers are left to prototype their 
LLM prompts and user interfaces in two separate environments, 
and as a result, they are likely to have less of an understanding of 
how the AI functionality might mesh with their UI, and will likely 
need to spend time iterating over their design when integrating 
this functionality into their interface. By tightly incorporating LLM 
prompting into the design of user interfaces, we can (1) enable the 
creation of fully functional and interactive AI prototypes and (2) 
help inform designers earlier on how the two technologies will 
combine. In this space, there are many open questions, including: 

• RQ1: What ways might integrating prompt programming 
and UI design afect the prototyping process? 

• RQ2: How should we help designers author UI mock-ups 
with LLM functionality? 

To answer these questions, we conducted a exploratory study 
with fve professional designers and found that the ability to infuse 
LLM prompts into mock-ups might change prototyping by: 

• Helping designers create functional prototypes quickly, with-
out relying on engineers or ML experts. 

• Informing designers earlier in the prototyping process on 
how the AI functionality will specifcally integrate into the 
application UI. 

https://doi.org/10.1145/3544549.3585628
https://doi.org/10.1145/3544549.3585628


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Savvas Petridis, Michael Terry, and Carrie J. Cai 

• Enabling user testing on functional prototypes earlier in the 
design process. 

Inspired by these fndings, we built PromptInfuser, an interactive 
tool for adding AI functionality to UI mock-ups with LLM prompts. 
PromptInfuser is a plugin for Figma, a popular prototyping tool 
that designers commonly use to create mock-ups of user interfaces
1. To bring UI mock-ups in Figma to life, PromptInfuser introduces 
two novel LLM interactions that users can author. The frst interac-
tion, input-output, makes text content in mock-ups dynamic and 
interactive; users can hook up a text element as input into an LLM 
prompt and then display the prompt’s completion to another text 
element, enabling extraction, classifcation, generation, and a mul-
titude of other AI functionalities within the mock-up. The second 
interaction, frame-change, adds additional expressivity by enabling 
authors to direct users to diferent frames (or screen designs) of 
content, depending on their natural language input. From initial 
observations, we fnd that these two interactions enable the cre-
ation of expressive AI mock-ups and that they transform the design 
process by tightly integrating both AI and UI prototyping. We also 
consider how a user’s prompt decisions afect their resulting design 
and how to make this process smoother and accessible to prompt 
programming novices via additional support and scafolding. 

Overall, this paper contributes (1) a set of fndings from an ex-
ploratory design probe, detailing how tightly integrating UI and 
LLM prompt design can afect the prototyping process and (2) 
PromptInfuser, our prototype that enables users to infuse LLM 
prompts into UIs with two novel interaction types: input-output 
and frame-change. 

2 EXPLORATORY STUDY 
We conducted a exploratory study to answer our two research ques-
tions and understand: (1) how integrating prompt programming 
with UI design might afect the prototyping process and (2) how we 
should support designers in authoring LLM-infused UI mock-ups. 

2.1 Procedure 
We recruited 5 professional designers at a large technology com-
pany (3 male, 2 female). We identifed designers that already had 
experience writing LLM prompts. At the start of the study, each 
designer was asked questions that probed how integrating LLM 
functionality into prototypes they have made in the past might have 
helped them. Then to provide further context, each designer was 
shown a simple demo of an LLM-infused translation application 
prototype, made in Google Slides. This demo was made prior to 
PromptInfuser and involved creating a Google Slide extension that 
sends a translation prompt to an LLM and outputs the translation 
on a slide. Within the demo, users could alter the input-language 
text (e.g. “Hello”) on the slide and then see a real translation appear 
in the output text-box (e.g. “Bonjour,” generated with a translation 
LLM prompt). After viewing this demo, the designers were given 
10 minutes to put together a mock-up of an application where the 
user inputs a natural language description of the weather and the 
interface outputs a few suggested outfts to wear. The designers 
made this mock-up in Google Slides, and as they drew the interface, 
designers were also asked to write out the LLM prompts and show 

1https://www.fgma.com/ 

how the prompt’s inputs (e.g. weather) and outputs (e.g. clothing) 
connect to the interface (by drawn arrows indicating inputs and 
outputs). That is, the designers could not author actual LLM func-
tionality. This was a design probe to explore how prompting might 
be done within the context of creating a UI-mock-up; thus, partici-
pants were asked to imagine their prompts were functional as they 
connected them to their design. Afterwards, they were interviewed 
on how they might imagine authoring these interactions. The study 
took approximately 30 minutes of each participant’s time. 

2.2 Findings 
2.2.1 RQ1. How does integrating prompt programming and UI de-
sign afect the prototyping process? Many participants noted that a 
tool enabling easy integration of LLM prompts into lower fdelity 
prototypes, such as those made in Figma or Google Slides, would 
greatly reduce the time required to create a functional pro-
totype. Currently, to incorporate the outputs of an LLM prompt, 
the designers need to have a functional web application that is con-
nected to the model, which requires signifcant time to set up, and 
often additional help from an engineer. P3 explained, “Now I’ve got 
a functional mock-up, which is sort of self-evidently useful. . . the 
advantage of this is that I did this in ten minutes. I can do these Lo-
Fi mock-ups really quickly, either here [Google Slides] or in Figma”. 
With a way to build functional prototypes quickly, P3 continued 
to explain that he could spend less time convincing engineers to 
help him build an application and instead quickly experiment with 
diferent iterations of the Lo-Fi prototype. At the same time, P5 
explained that having a functional mock-up is sometimes more 
useful than a static mock-up as they enable clearer communication 
for an idea and ensure “that we’re all understanding the concept in 
the same way”. Overall, including LLM functionality into mock-ups 
would enable designers to rapidly construct functional mock-ups, 
helping them (1) allocate more of their time to designing and ex-
perimenting with layouts, and (2) clearly communicate their AI 
application idea. 

In addition to reducing the time to create functional prototypes, 
integrating LLM functionality directly into Lo-Fi mock-ups 
helps designers understand their requirements of these mod-
els earlier in the design process. From the task portion of the 
exploratory study, we observed that the processes of authoring 
prompts and mocking up a UI design inform each other. For ex-
ample, P1 started designing his weather-to-outft application by 
writing an LLM prompt that takes as input a description of the 
weather and outputs a description of a suggested wardrobe (Figure 
1A). After writing this prompt, he began his UI design, which con-
sisted of a voice-input mobile application, which upon receiving 
the user’s weather description, directs them to a list of suggested 
wardrobe items (Figure 1B). After he fnished his design, P1 realized 
that the output of his LLM prompt should be structured as well, to 
map each suggested item in the generation to a list element in the 
UI. He then revised his original prompt to output a list of wardrobe 
items (Figure 1C). Thus, as he constructed his LoFi mock-up for an 
application, P1 gained a clearer understanding of how the prompt 
would need to output its generations to ft his current design. In 
this way, integrating LLM functionality into mock-ups could help 

https://1https://www.figma.com


PromptInfuser: Bringing User Interface Mock-ups to Life with Large Language Models CHI EA ’23, April 23–28, 2023, Hamburg, Germany 

Figure 1: P1’s prototyping process in the exploratory study, illustrating how the processes of LLM prompt writing and UI design 
infuenced each other. They started by frst writing a weather-to-wardrobe prompt that outputs an unstructured description of 
a wardrobe suggestion (A). After writing this prompt, they then start mocking up the user-interface, which he imagines as 
a voice-input system, which directs the user to a suggested list of wardrobe items (B). Realizing that the output of the LLM 
prompt should easily map to a list of wardrobe items (instead of an unstructured wardrobe description), P1 then revises his 
original prompt to output a structured list of items (C). 

designers better understand their needs of these models earlier on, 
before spending the time to create a high-fdelity prototype. 

Finally, with the ability to easily make functional LoFi mock-
ups, designers felt they would be able to conduct user studies 
with functional prototypes earlier in the design process. Con-
ducting a user study on a functional prototype is very valuable and 
allows designers to see how a user might actually interact with their 
proposed design. Normally a functional prototype is quite costly 
to produce, involving quite a bit of development and involvement 
from engineers. But with a tool to produce these functional mock-
ups quickly, P3 explained that he could conduct more informed 
user studies: “Now with a functional prototype, it’s not ‘Hey user, 
talk to me like as if I was the model - now we can just have them 
try it”. P3 continued to explain that being able to alter the func-
tional mock-up quickly would also enable conducting studies with 
multiple diferent versions of the mock-up to quickly converge on 
the most viable option. Thus, by making the process of creating 
functional prototypes faster, we can help designers quickly test 
multiple ideas and converge on fnal designs faster. 

2.2.2 RQ2. How can we help designers author LLM-infused proto-
types? Designers easily adopted the idea of mapping UI elements 
to the inputs and outputs of LLM prompts. As they authored their 
mock-ups, designers would often write LLM prompts, revise them 
after updating their UI design, and then reassign diferent UI ele-
ments to the LLM prompt. Based on this, a tool for helping users 
author LLM-infused mock-ups should help users easily assign and 
reassign UI elements to inputs and outputs of an LLM prompt. This 

assignment should be as easy as selecting UI elements and clicking 
on the relevant LLM prompt. Finally, to ensure that designers can 
rapidly construct these UI elements, this tool should be built atop 
prototyping tools they already know how to use, such as Figma or 
Google Slides. Therefore, a tool to create LLM-infused mock-ups 
should tightly integrate a common prototyping tool with an LLM, 
and enable designers to easily connect elements of their designs to 
this LLM. 

3 PROMPTINFUSER 
Informed by the exploratory study, we created PromptInfuser, our 
system that enables designers to infuse UI mock-ups with LLM 
functionality (Figure 2). PromptInfuser is implemented as a Figma 
plugin so that it is built atop a tool designers already commonly use 
to mock-up interfaces. PromptInfuser also incorporates a version 
[2] of the LLM detailed in [1], which is a large language model that 
is promptable in the same way as GPT-3, OpenAI’s LLM 2. When 
an LLM prompt is run in PromptInfuser, the prompt text and input 
is sent to a server containing the LLM, and the completion is sent 
back to PromptInfuser. 

3.1 Two Infusable LLM-interactions 
3.1.1 Input-output. PromptInfuser implements two primary LLM-
based interactions to help designers make their mock-ups func-
tional: input-output (Figure 2) and frame-change (Figure 3). The 
input-output interaction consists of taking a text element as input 

2https://openai.com/api/ 

https://2https://openai.com/api


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Savvas Petridis, Michael Terry, and Carrie J. Cai 

Figure 2: The input-output authoring interface in PromptInfuser. The input-output interaction consists of an LLM prompt 
that takes input from a text element and outputs its completion to another text element. Here, the user is trying to provide a 
music recommendation given a natural language request (�2) and output this recommendation to another text element (�2). 
To author this interaction, they selected (�2) as the input text element and set it in the PromptInfuser sidebar (�1). They also 
selected the output text element (�2) and set it as the output in (�1). Finally, they wrote the prompt which generates music 
recommendations based on a request in (�); [[input]] denotes where the text from (�2) will be inserted. They can then press 
“Run Prompt” to execute this prompt and update the output text element (�2). 

from the UI, running an LLM prompt on this input text, and out-
putting the prompt’s completion into another text element. This 
type of interaction was shown in the exploratory study (Section 
2.1) to designers in the form of a translation application. To author 
this interaction, users simply assign input and output text elements 
in PromptInfuser and write the corresponding LLM prompt. For 
example, consider a PromptInfuser user designing an application 
where its users describe music requests and the system provides a 
music recommendation (Figure 2). Currently in Figma, the Prompt-
Infuser user has two frames created, a welcome_page frame, where 
the user inputs their request, and a recommendation_response frame, 
where the system presents its recommendation based on the user’s 
request. They would like to have an LLM prompt generate a music 
recommendation from the request inputted in Figure 2�2 and then 
present this recommendation in a text element in the recommenda-
tion_response frame (Figure 2�2). To do so, they select the input 
text element in Figure 2�2, press “Set Input”, and then complete the 

same process for the output text element. Finally, they write their 
prompt in Figure 2� , and include “[[input]]” to denote where the 
text from the input text element will go in the prompt. They press 
“Run Prompt” to execute this input-output interaction and change 
the output text element’s content. With this interaction, users can 
infuse AI functions that dynamically update the text within their 
mock-ups. 

3.1.2 Frame-change. While input-output interactions can make 
the content within mock-ups dynamic and interactive, they do not 
cover the wide range of interactivity required for a fully functional 
prototype. Prototypes often consist of multiple frames, or screens 
of content, which users are directed to depending on their input. 
This type of interaction can also be authored in PromptInfuser, 
with the frame-change interaction. Consider the same music rec-
ommendation scenario as before, but this time the PromptInfuser 
user would like to direct users of their application to a separate 



PromptInfuser: Bringing User Interface Mock-ups to Life with Large Language Models CHI EA ’23, April 23–28, 2023, Hamburg, Germany 

Figure 3: The frame-change authoring interface in PromptInfuser. The frame-change interaction consists of a classifcation 
prompt that takes user input and redirects them to a new frame, depending on how that user’s input is classifed. In this 
example, the goal is to classify the user’s input request as either “aboutMusic” or “notAboutMusic”, and to redirect them to the 
corresponding frames: recommendation_response and not_about_music. Here the user selected the input text element which 
contains the input request (�2) and set that as the input (�1). They then defned the mapping of the two classes: “aboutMusic” 
and “notAboutMusic” by frst setting the classes in (�1), selecting its corresponding frame (�2 for “aboutMusic” and �3 for 
“notAboutMusic”), and then pressing “Assign frame” in �1. Finally, they wrote the classifcation prompt in (�) which determines 
if the request is about music; [[input]] is used to denote where the text from �2 will be inserted in the prompt. By setting 
the stop word in (�), users can shorten the LLM completion to just the output class. Finally, they can press “Run Prompt” to 
execute the prompt, and depending on the output class, PromptInfuser alters its view port to place the correct corresponding 
frame in the center of the screen. 

screen when their input request is not about music (Figure 3). Con-
cretely, if the input on the welcome_page frame (Figure 3�2) is 
classifed as about music, users should be directed to the recom-
mendation_response frame (Figure 3�2), otherwise users should be 
directed to the not_about_music frame (Figure 3�3). To author this 
interactivity, the user selects an input text element (Figure 3�2) 
and sets it as the input in the PromptInfuser sidebar (Figure 3�1). 
Next, the user defnes the two classes that the input text could be 
classifed as: aboutMusic or notAboutMusic (Figure 3�1), and then 
selects each class’s corresponding frame to map to in Figma. After 
defning the classes and their mappings, the user then writes a few-
shot classifcation prompt, which determines if the given text is 
aboutMusic or notAboutMusic (Figure 3�). Finally, the user includes 
a stop word “Request” to truncate the LLM’s output to only the 
output classifcation (Figure 3�). When “Run Prompt” is clicked, 

PromptInfuser will classify the input text and alter Figma’s view-
port to place the corresponding frame at the center of the screen. 
Overall, the frame-change interaction enables richer interactivity, 
where users are directed to frames with entirely diferent content 
based on their natural language input. 

3.2 Initial Observations 
The authors conducted their own informal experiments making 
LLM infused mock-ups with PromptInfuser. From initial observa-
tions, we found that PromptInfuser encourages a new form of design 
process, where prototyping of the UI and AI are tightly integrated. 
Users are constantly switching contexts between probing the LLM 
and designing frames and fows, and these two processes afect and 
inform each other. While this process can lead to exciting and dy-
namic UIs, it is a bit brittle, as users can get derailed troubleshooting 



CHI EA ’23, April 23–28, 2023, Hamburg, Germany 

defective prompts, indicating a need for more structured prompt 
writing or error handling in future versions of PromptInfuser. 

3.2.1 With PromptInfuser, UI and AI prototyping are tightly in-
tegrated. The performance of an LLM prompt greatly afects the 
design of the user interface. While mocking up an application, one 
author initially tried to write a prompt that when given input text, 
extracted a list of items from the text. However, the prompt they 
authored would often fail, by either hallucinating items that did not 
appear in the original input text or extracting the items imperfectly. 
From their prior experience prompt programming, they realized 
that this task might involve too many steps for a single LLM prompt 
and decided to decompose the task into (1) frst identifying if the 
text contains items to extract and then (2) extracting these items. 
With this new breakdown of the AI functionality, they then needed 
to update their UI. To account for inputs without items to extract, 
they added a new frame for users to re-input new text. Overall, a 
user’s knowledge of prompt programming ultimately afects how 
well they author prompts and how they decompose AI operations, 
which in turn afects the design of the user interface. 

3.2.2 Helping designers author functional LLM prompts while pro-
totyping. If a designer has trouble writing a functional LLM prompt 
or decomposing the prompt into easier steps, their prototyping 
process could get disrupted. Currently, PromptInfuser ofers little 
support for designers to understand either how well their prompts 
are doing or how to quickly improve them. Even seasoned prompt 
programmers can have trouble getting a prompt to work for a va-
riety of reasons, from fnding the right way to phrase a prompt, 
coming up with examples, etc. [4]. From our early observations, we 
noticed that these same problems occur within PromptInfuser, and 
currently only those with ample experience in prompt program-
ming can quickly prototype a functional interface. In the future, 
we can support more novice users in writing prompts by providing 
prior examples to build from, or updating the interface so that con-
structing a prompt is more scafolded (e.g., users can be asked to 
input example pairs instead of writing a classifcation prompt from 
scratch). By supporting the prompt writing process, we can make 
developing AI-infused mock-ups smoother and accessible to more 
designers. 

4 CONCLUSION AND FUTURE WORK 
This paper has conducted an initial investigation into incorporating 
the power of prompt programming into the context of creating 
functional UI mock-ups. To understand how this capability might 
afect the prototyping process, we conducted an exploratory study 
and found that by enabling LLM infusion into mock-ups, we can 
potentially reduce the time needed to create a functional proto-
type, give designers an earlier understanding of how to integrate 
AI functionality into their design, and enable designers to conduct 
user studies on functional prototypes earlier. Inspired by this study, 
we created PromptInfuser, our Figma Plugin that enables designers 
to author LLM-infused mock-ups. With PromptInfuser, designers 
can author two novel LLM-based interactions. The frst interaction, 
input-output, makes content in Figma interactive and dynamic; a 
text element can be inputted into an LLM prompt and the model’s 

Savvas Petridis, Michael Terry, and Carrie J. Cai 

completion is displayed in another text element. The second interac-
tion, frame-change, adds additional expressivity by directing users 
to diferent frames within Figma based on their natural language 
input. From initial observations, we found that PromptInfuser trans-
forms the design process by tightly linking UI and AI prototyping, 
and could further support prompt writing to ensure a smoother 
prototyping experience. 

Finally, there are many opportunities for future work, including 
identifying and implementing new forms of LLM-based interactions, 
on top of input-output and frame-change, incorporating support for 
designers to write functional prompts with PromptInfuser, investi-
gating how large language models or text-to-image models could 
also help with generating frames and user interfaces for designers, 
and fnally, conducting a formal evaluation of PromptInfuser and 
an in-depth analysis on how it afects the prototyping process. 

REFERENCES 
[1] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, 

Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, 
and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. https: 
//doi.org/10.48550/ARXIV.2001.09977 

[2] Eli Collins and Zoubin Ghahramani. 2021. LaMDA: our breakthrough conversation 
technology. https://blog.google/technology/ai/lamda/ Accessed: 2023-01-11. 

[3] Matthew K. Hong, Adam Fourney, Derek DeBellis, and Saleema Amershi. 2021. 
Planning for Natural Language Failures with the AI Playbook. In Proceedings of the 
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) 
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 386, 
11 pages. https://doi.org/10.1145/3411764.3445735 

[4] Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach, Michael 
Terry, and Carrie J Cai. 2022. PromptMaker: Prompt-Based Prototyping with Large 
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human 
Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22). Association 
for Computing Machinery, New York, NY, USA, Article 35, 8 pages. https://doi. 
org/10.1145/3491101.3503564 

[5] Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John Zimmerman. 2020. Re-
Examining Whether, Why, and How Human-AI Interaction Is Uniquely Difcult 
to Design. In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, 
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376301 

https://doi.org/10.48550/ARXIV.2001.09977
https://doi.org/10.48550/ARXIV.2001.09977
https://blog.google/technology/ai/lamda/
https://doi.org/10.1145/3411764.3445735
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3313831.3376301

	Abstract
	1 Introduction
	2 Exploratory Study
	2.1 Procedure
	2.2 Findings

	3 PromptInfuser
	3.1 Two Infusable LLM-interactions
	3.2 Initial Observations

	4 Conclusion and Future Work
	References



